ON THE THERMAL CONTACT RESISTANCE
UNDER VACUUM

V. A. Maltkov UDC 536.2.023

The author analyzes the heat exchange under vacuum between two bodies whose adjoining
surfaces are in contact at discrete spots uniformly spaced along parallel and equidistant
zones. The theoretical values of the thermal contact resistance are compared with ex-
perimental data.

The correct calculation of temperature fields in the design of high-temperature apparatus requires
a sufficiently accurate determination of the thermal confact resistance between parts which are o be joined
together. Formulas for the heat exchange at a contact have been derived in [2] on the basis of theoretical
analysis and generalized experimental data. '

The thermal contact resistance depends on the microgeometry of the surfaces and the physical charac-
teristics of the surface layer and of the contact medium. The geometry of contact elements in a real situa-
tion is determined basically by the surface treatment. In many types of treatment these elements assume
the form of ellipses with varying eceentricities [6], but in some cases one may consider the contact between
two bodies to be effected along parallel zones spaced with a certain piteh.

In this article we will analyze the steady-state temperature field of a contact uniformly spaced in a
plane as shown in Fig. 1. It is assumed that the contact between bodies 1 and 2 is effected along infinite
parallel zones of width 2a spaced at a step 2b, and that the heat transfer from one body to the other takes
place only by way of thermal conduction through the elements of actual contact. This pattern is approxi-
mated by a contact between a surface with regular roughness in one direction and another smooth surface.
For most types of surface treatment, according to [8], the angle « is less than 10° and it will be assumed,
therefore, that o =0.

Let us consider a steady heat flux in the X direction. Since the contact pitch has been assumed uni-
form, then in order to determine the temperature field we will select one element contact (Fig. 1b) whose
surfaces Y =0 and Y = b are adiabatic, i.e.,

i =) and o

- =0.
aY {Y=0 ay

Yeub

The angle o will be assumed equal zero.

With a known heat flux q, contact temperature t¢, and thermal conductivity Ay of the material, the
problem reduces to that of solving the Laplace equation

gt 9T 1
for the following boundary conditions:
JatX=0andY >b-a, t =1t
2) at Y =0, 8t/9Y = 0;
3)at Y =b, 8t/0Y =0;
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Fig. 1. Two-dimengional contact patiern with
a uniform pitch between a rough and a smooth
surface; A) idealized contact pattern; B) con~
tact element; 1 and 2 are the bodies in contact,
a and b are the contact parameters.

N 2 2l b §

Fig. 2. Heat flow lines and isotherms in the coniact zone:
AYn =a/b=0.05, B}y =a/b=0.25; 1) are the thermal
eurrent lines; 2) are the isotherms. The temperature
gradient between adjacent isotherms is Au = 0.5,

4) at X = s, 3t/0K = q/AM;
5)atX=0and ¥Y<b-g, 8t/8X =0.

The thermal contact resistance represents an additional resistance of the thermal path over and above
that of an ideal contact, and it is defined as follows:

1(w0) — i {(-=00) — (1, (00) — £; (—00))

where t(9), tjfe), t{—=), tyj(~») are the respective temperatures at X =« and X = —; the subscript 1 refers
to an ideal contact. We now introduce the following dimensionless parameters:
X Y

Q
X = Y= o = ::1—.«1(;;

b b

3)

t— fK ?LM
U = B and Fa= Re—
bé] C C b -

It is well known from the theory of analytic functions of a complex variable that the real and the
imaginary components of such a function satisfy the Laplace equation, the two components being orthogonal
functions. In the steady-state temperature field problem, therefore, one component of the analytic function
may correspond to equipotential lines (isotherms) while the other component may correspond to foree lines
of the potential flow (thermal eurrent lines).
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at The unknown temperature field is determined by conformal

x| 44
"5 mapping of the region 0 <y < 1 in the complex plane z = x + iy with
\ a notch (0 =y <h, x =0) into the region 0 <v < 1 in the complex
\ : _ plane w = u + iv, After performing several elementary transforma-
\\ tions [1], we obtain the following expression for the complex poten-
\ tial w:
2 nh 2 wth
W = — arth (cos_ th? -~ G
ob\ - e e ) @
\‘\ N . Separating the real and the imaginary part in expression (8)
g \\\ \\ N after a few transformations will give the following equations which
“ AN relate functions u and v with the coordinates x and y:
\\ 2 \’\ ‘ _h + b 1, (5)
<] A ch? s sh? mu
\ T~ i . i =1 (6)
K \ B cos? mw sitnw
1 [ M P—
7 n 7] 0 0 x/a where
T 2
chmx cos my + cos? — 1 .
Fig. 3. Temperature gradient - f = shaxsinmy \?
dt/8X|y -, as a function of the ! sin? =% ? sin? % g
dimensionless distance param- 2 2
eter X/a, whenqg/Ay=1: 1) 1 Solving equation (5) for u and reverting to dimensional variables,
=107% 2) 2 +107% 3) 5 -10‘2; 4) we obtain the following expression for the temperature:
1071 5) 0.2; 6) 0.5. S
tﬂdjimwﬁ¢£u+yﬁggua4.m
sth,, 2 2 !

The signs (+) and (-) before the second term refer respectively to body 1 and body 2 (Fig. 1b).

Assuming now v = const in expression (6) will yield the equation for a family of thermal current lines.
Solution of this equation for y and reversion to dimensional variables gives

b Ch%cosz(él % ) : 5 Shzi‘i{_
Y = — arccos | — : ~ Tk’ T2 cost (i i) -+ + sin* (_n_ i-) cos? o
z she ™ b 2 b {g? v 2 b
oh? aX b
b tg* mo »
172
—cos4(—'£~~a—j Hoche ™2 4 ch2 22 4~ - [t 8)
L2 b\ b tg? mw b tg?my

Solution of equation (5) for x with u = const gives (in dimensional variables) the isotherms equation in
the following form:

Yy L,/ m a .o Y
b cos = o085 N
X =+ —arch{— ~— 4 ch®musint (— —> cos® —
-~ sin? Y 2 b b + th? s
, Y b
cos? —— A~ -
b th?au
sin? “b v sin? : . " v sin® i};;
s T T a K . 7
27 e e (—2_ 7) [ O I ®

The orthogonal families of isotherms and thermal current lines are shown in Fig. 3 for two different
values of parameter 7.

By differentiating expression (7) with respect to X and Y it is possible to obtain equations for the tem-
perature gradients 8t/9X|y = const 20d 0t/9Y [x = congt- AS anexample, the temperature gradient 8t /8Xly _

as a function of the dimensionless distance parameter X/a is shown in Fig. 3 for different values of n with
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Fig. 4. Thermal contact resistance
m® -deg /W) as a function of load (N
17 N /m? under vacuum at tg =500°C, for
' \ \{ a VM-1/Kh18N9T contact pair; 1) theo-
¢ ! . retical calculations; 2} experimental
s results.
7 —,
¢ 10 2. pcw

q/Apy =1. It is evident here that the temperature gradients in the contact zone increase sharply and attain
their maximum values in the contact plane.

The quantity rc in (3) will be defined as the difference

fo= At (00) — Aty (00), (10}

where
Au(o0) = u(o0) —u(—wx);
Awy (o) = thy {o0) — 1ty (— o)
(the subscript 1 refers to an ideal contact, 1 = 1).
An analysis of equation (5) when x = £ ® will show that function u asymptotically approaches the straight

lines

u(+ m):x?%lmsin(%q). an

\

With this taken into consideration, we obtain from expression {10}

4 L om {12)
PO Insin{ —mn|.
‘e s ( 2 ﬂ)
In dimensional variables the thermal contact resistance becomes
4 b noa
Rp=— — Insin{ ——-—— 1 (13)
c A, ( 2 b )

In a general case, when the two bodies in contact have different thermal conductivities, the thermal contact
resistance is

4 b A
Rp= —— -=Insin (»5»—2—) (14)

Ty
The magnitude of the relative contact area n can be determined from one of the formulas in [5]. Speci~
fically, in many cases one may use the expression

_ Pc
1= oo (15)

where op is the ultimate strength of the weaker material in the contact pair.
Using (15) and taking into account (3), formula (14) can be rewritten as

Re= — -+ L inan (2 £9)
T Ay 6

Py (16)
We go back now to expression (12) and note that it was derived assuming the bodies in contact to be

infinitely long in the x-direction. The dimensions of the effective contact zone are very small, however,

as long as essential changes in the temperature field are observed near the contact plane. For this reason,

it is permissible in almost all practical cases to use the formulas derived here. It can be demonstrated that

Re quickly becomes independent of X. If the dimensions of bodies 1 and 2 (Fig. 1) along the x-axis equal

b/2, for example, then Rcispractically the same as for infinitely long bodies [3].
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The validity of formula (16) for calculating the thermal contact resistance of actual surfaces was
verified by an experiment with a VM-1/Kh18N9T metal pair under vacuum (pressure of 10~ mm Hg). The
contact pressure was varied between 2.5 - 10° and 20 - 10° N /m?, at a contact temperature of 500°C. The
thermal contact resistance was determined according to the formula

Af
Ro= =X,
q
where Atc is the temperature drop across the contact found by linear extrapolation of specimen tempera-

tures up to the contact plane.

(17)

The maximum error in this determination of Rg amounted to about 10%.

The quality of the surface finish on the contact pair was checked with a profilograph-profilometer of
the Kalibr Works. The VM-1 alloy specimen had been ground to a Class 10 surface fineness, while the
Kh18N9T steel specimen had a Clags 4 surface fineness with a mean microroughness of 24 pum. The radius
of grinding tracks was about 10° times the width 2¢ of the contact zone and, consequently, the effect of the
curvature of the grinding track could be disregarded assuming the track to be straight.

In examining the contact surface of the Kh18N9T steel specimen on the profilograph-profilometer we found
awaviness (inthe direction perpendicular to the grinding tracks) with a step of 5-6 *10™3 m., The crest height
of this waviness was approximately the same as that of the microroughness. These waviness parameters
agree approximately with the results shown in the picture collection of surface quality attained by different
surface treatments [4].

As a result of an existing waviness condition, an actual contact between surfaces is formed only by
the microprotrusions at the wave peaks. :

It is evident from Fig. 4 that the discrepancy between calculated (b = 3 -10~% m) and experimental data
is greater at lighter loads than at heavier loads. This can obviously be explained by the fact that the heights
of the wave peaks vary somewhat. Thus, it is noted in [6] that the difference between the heights of indivi-
dual waves can amount to about 20%. When the relative contact area 1 is small, therefore, the load is taken
up by the highest microprotrusions only and, consequently, the distance 2b between adjacent microprotru-
sions within the contact region may be greater than the waviness pitch.

The change in dimension b due to loading can be accounted for, if the wave shape as well as the shape
and the height distribution of microprotrusions are known.

In this way, the thermal contact resistance of a planar contact under vacuum can, to the first approxi-
mation, be calculated by formula (16). For a more accurate calculation, it is necessary to account for the
change in dimension b due to loading.

NOTATION
X, Y are the coordinates (Fig. 1);
2a is the width of contact zone;
2b is the contact pitch;
7 is the relative contact area;
h is the difference between ideal and actual relative contact areas;
X,y are the dimensionless coordinates;
t is the temperature;
to is the contact temperature;
q is the heat flux;
pC is the contact pressure;
op is the ultimate strength;
AM is the thermal conductivity;

AM = 2A, A M, /(Apg, + AM,)
u, v

is the equivalent thermal conductivity (bodies 1 and 2);
are the conjugate harmonic functions (u is the temperature function,
the thermal current funhction);

Uy is the u-function for an ideal contact i = 1);
u(s) is the u~function at x = «;

(o) is the u-function at x = —oo}

Rec is the thermal contact resistance;

re is the relative thermal contact resistance.
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