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The author analyzes the heat exchange under vacuum between two bodies whose adjoining 
surfaces  a re  in contact at d iscre te  spots uniformly spaced along parallel  and equidistant 
zones. The theoret ical  values of the thermal  contact res is tance  are  compared  with ex- 
per imental  data. 

The co r r ec t  calculat ion of t empera tu re  fields in the design of h igh- tempera ture  apparatus requires  
a sufficiently accura te  determinat ion of the thermal  contact res i s tance  between parts  which are  to be joined 
together .  Formulas  for  the heat exchange at a contact have been derived in [2] on the basis  of theoret ical  
analysis  and general ized experimental  data. 

The thermal  contact res i s tance  depends on the mic rogeomet ry  of the surfaces  and the physical cha r ac -  
t e r i s t i c s  of the surface layer  and of the contact medium. The geometry  of contact  elements in a real  s i tua-  
tion is determined basical ly by the surface t rea tment .  In many types of t rea tment  these elements  assume 
the fo rm of el l ipses with varying eccent r ic i t i es  [6], but ~n some cases  one may consider  the contact between 
two bodies to be effeoted along paral lel  zones spaced with a cer ta in  pitch. 

In this ar t ic le  we will analyze the s teady-s ta te  tempera ture  field of a contact uniformly spaced in a 
plane as shown in Fig. 1. It is assumed that the contact between bodies 1 and 2 is effectcd along infinite 
paral lel  zones of width 2a spaced at a step 2b, and that the heat t r ans fe r  f rom one body to the other  takes 
place only by way of thermal  conduction through the elements  of actual contact.  This pattern is approxi-  
mated by a contact between a sur face  with regula r  roughness in one di rect ion and another smooth surface .  
For  most  types of surface  t rea tment ,  according to [6], the angle c~ is less than 10 ~ and it will be assumed, 
therefore ,  that a = 0. 

Let us consider  a steady heat flux in the X direction.  Since the contact pitch has been assumed uni- 
form, then in o rde r  to determine the t empera tu re  field we will select  one element contact (Fig: lb) whose 
surfaces  Y = 0 and Y = b are  adiabatic, i.e., 

The angle a will be assumed equal zero .  

ot  = 0  and at v=b = o . 

o Y  

With a known heat flux q, contact t empera tu re  t C, and thermal  conductivity XM of the mater ia l ,  the 
problem reduces  to that of solving the Laplace equation 

a~t + a : t  = o (1) 
a x :  OF ~ 

for  the following boundary conditions: 

1) a t X = 0  andY > b - a ,  t = t c ;  

2) at Y = 0, 3 t /3Y = 0; 

3) a t Y  =b ,  5t /3Y =0;  
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Fig, 1. Two-dimensional  contact pat tern with 
a uniform pitch between a rough and a smooth 
surface:  A) idealized contact pattern; B) con-  
tact  element; I and 2 are  the bodies in contact, 
a and b a re  the contact  pa rame te r s .  

i 
Fig. 2. Heat flow lines and i so the rms  in the contact zone: 
A)~  = a / b = 0 . 0 5 ,  B)~ = a / b = 0 . 2 5 ;  1) are  the thermal  
cu r r en t  lines; 2) a re  the i so therms .  The tempera tu re  
gradient  between adjacent i so therms  is Au = 0.5. 

4) at  X = ~ ,  a t / a x  = q / ~ M ;  

5) a t X = 0  a n d Y < b - a ,  8 t / O X = 0 .  

The thermal  contact res i s tance  represen t s  an additional res i s tance  of the thermal  path over and above 
that of an ideal contact, and it is defined as follows: 

l ( ~ )  - t ( - -  oo) _ (~1 ( ~ ) - -  G (_oo)) ,  
R e =  q (2) 

where t(~), tt(oo), t(-oo), tt(-oo) are  the respect ive  t empera tu res  at X = ~ and X = _oo; the subscr ipt  1 r e fe r s  
to an ideal contact .  We now introduce the following dimensionless  pa ramete r s :  

X Y a x = - - ;  g = ~1 ~--;  h = 1 --~q; 
b ~--;  = (a) 

t - -  6 k,~; a~d r c = R -~>~- 
u =  b--q- C b " 

It is well known f rom the theory of analytic functions of a complex variable that the rea l  and the 
imaginary components of such a function satisfy the Laplace equation, the two components being orthogonat 
functions. In the s teady-s ta te  t empera tu re  field problem, therefore ,  one component of the anatytie function 
may correspond to equipotential lines (isotherms) while the other component may correspond to force l ines 
of the potential flow (thermaI cur ren t  lines).  
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F i g .  3. T e m p e r a t u r e  g r a d i e n t  

0 t / 0 X I y  =b  a s  a func t ion  of the  

d i m e n s i o n l e s s  d i s t a n c e  p a r a m -  

e t e r  X/a,  when q / ~ M  = 1: 1) 
= 10-2; 2) 2 "10-2; 3) 5 "10-2; 4) 

10-1; 5) 0.2; 6) 0 .5 .  

The  unknown t e m p e r a t u r e  f i e ld  i s  d e t e r m i n e d  by c o n f o r m a l  

m a p p i n g  of the  r e g i o n  0 < y < 1 in  the  c o m p l e x  p lane  z = x + iy with 
a notch (0-< y < h, x = 0) into the  r e g i o n  0 < v < 1 in the  c o m p l e x  
p lane  w = u + iv .  A f t e r  p e r f o r m i n g  s e v e r a l  e l e m e n t a r y  t r a n s f o r m a -  
t i o n s  [1], we ob ta in  the  fo l lowing  e x p r e s s i o n  fo r  the  c o m p l e x  p o t e n -  
t i a l  w: 

w = - - a r t h  cos th 2 - + t g  ~ (4) 
T 2 7 - "  

S e p a r a t i n g  the  r e a l  and the  i m a g i n a r y  p a r t  in e x p r e s s i o n  (8) 
a f t e r  a few t r a n s f o r m a t i o n s  wi l l  g ive  the  fo l lowing  equa t ions  which 
r e l a t e  func t ions  u and v wi th  the  c o o r d i n a t e s  x and y: 

[1 _}_ [z - -  I,  (5)  
ch 2 r~u sh ~ nu 

fl fx 1, (6) 
cos 2 av sift- av 

where 

( ): I 1 
ch nx cos ay + cos 2 ~ -  ~1 sh ax sin ay 

h = & = 
sin~ a- a 2 ~l s in2--2 ~l 

Solving equa t ion  (5) f o r  u and r e v e r t i n g  to  d i m e n s i o n a l  v a r i a b l e s ,  
we ob ta in  the fo l lowing  e x p r e s s i o n  f o r  the  t e m p e r a t u r e :  

t = t c +  a~Mbq a r c h / f l + f 2 + l  ' ~ 2 (7) 

The  s i g n s  (+) and  ( - )  b e f o r e  the  s e c o n d  t e r m  r e f e r  r e s p e c t i v e l y  to  body 1 and body 2 (F ig .  l b ) .  

A s s u m i n g  now v = cons t  in  e x p r e s s i o n  (6) wi l l  y i e l d  the  e q u a t i o n  f o r  a f a m i l y  of t h e r m a l  c u r r e n t  l i n e s .  
So lu t ion  of th i s  equa t ion  fo r  y and r e v e r s i o n  to  d i m e n s i o n a l  v a r i a b l e s  g ives  

b }z~. _ _  arccos _ _  b ,-2-- -%- aX a a b -  
sh 2 aX • -- cos4 + 

_ _  b 2 -  b -  tg 2 av 
aX , b ch 2 - -  -t- - - - -  
b tg 2 a:v 

51 a ) ~ !  
- -  COS 4 Ch 2 

' 2T i 
+ b :~x _ _ _ b  

.b ~ ChUb- + tg ~"nv " (s) 

Solu t ion  of equa t ion  (5) f o r  x wi th  u = cons t  g i v e s  (in d i m e n s i o n a l  v a r i a b l e s )  the  i s o t h e r m s  equa t ion  in 

C0S b cos'-' - 7 ,  

the  fo l lowing  f o r m :  

b j 

c~ b ~ ;  ~uu ' (9) 

X = • --b-arch 
nY 

sin'2 _ _  

cos-" -~Y q- b 

b th 2 au 

+ -- th 2 au c~ + th 2 au c~ 

The  o r t h o g o n a l  f a m i l i e s  of i s o t h e r m s  and t h e r m a l  c u r r e n t  l i n e s  a r e  shown in F ig .  3 fo r  two d i f f e r e n t  

v a l u e s  of p a r a m e t e r  7 .  

By d i f f e r e n t i a t i n g  e x p r e s s i o n  (7) wi th  r e s p e c t  to X and Y i t  i s  p o s s i b l e  to  ob t a in  equa t ions  fo r  the  t e m -  
p e r a t u r e  g r a d i e n t s  0 t / a X I y  = c o n s t  and 0 t / 0 Y  IX = const"  As a n e x a m p l e ,  the  t e m p e r a t u r e  g r a d i e n t  0 t / ~ X I y  = b 

a s  a func t ion  of the  d i m e n s i o n l e s s  d i s t a n c e  p a r a m e t e r  X / a  i s  shown in  F i g .  3 f o r  d i f f e r e n t  v a l u e s  of ~? wi th  
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Fig. 4. Thermal  contact  res i s tance  
(m 2 .deg/W) as a function of load (N 
/In 2) under vacuum at t C = 500~ for  
a VM-1/KhlSN9T contact  pair; 1) theo-  
re t ical  calculations;  2) experimental  
resu l t s .  

q / k M =  1. 
the i r  maximum values in the contact  plane. 

where 

it is evident here  that the tempera ture  gradients in the contact zone increase  sharply and attain 

The quantity r C in (3) will be defined as the difference 

A u ( ~ )  = u ( ~ ) - - u ( - - ~ ) ;  

~u~ ( ~ )  = .~ (~) --u~ ( -  ~)  

(the subscr ipt  1 r e f e r s  to an ideal contact, V = 1). 

(:to) 

An analysis  of equation (5) when x = �9 ~ will showthat  ftmction u asymptot ical ly  approaches the straight  
lines 

(+) u ( + _ ~ ) = x T  2 tnsin ~1 �9 

With this taken into considerat ion,  we obtain f rom express ion  (10) 

4 

In dimensional var iables  the thermal  contact res is tance  becomes 

In a general case, 
resistance is 

(11) 

(12) 

when the two bodies in contact have different thermal eonductivities, the thermal contact 

RC= 4 b lnsin( "~ a t 
--2- \-7- 

The magnitude of the relat ive contact  a rea  U can be determined f rom one of the formulas  in [5]. Speci-  
fically, in many cases  one may use the express ion  

Pc (15) 
T I = 3 0 ,  B ' 

where a B is the ultimate strength of the weaker  mater ia l  in the contact pair .  

Using (15) and taking into account (3), formula  (14) can be rewri t ten  as 

R e =  n ~ . - -  �9 (16) 

We go back now to express ion  (12) and note that. it was derived assuming the bodies in contact to be 
infinitely tong in the x-di rec t ion.  The dimensions of the effective contact zone are  very  small,  however, 
as long as essent ial  changes in the t empera tu re  field are observed near the contact plane. For  this reason,  
it is permiss ib le  in almost  all pract ical  eases  to use the formulas  derived here.  It can be demonstrated that 
R C quickly becomes independent of X. If the dimensions of bodies i and 2 (Fig. 1) along the x-axis  equal 
b / 2 ,  for  example, then R c i s  pract ical ly  the same as for infinitely long bodies [3]. 
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The validity of formula  (16) for calculating the thermal  contact res is tance  of actual surfaces  was 
verif ied by an experiment  with a VM-1/Khl8N9T metal  pair  under vacuum (pressure of 10 -4 mm Hg). The 
contact p ressu re  was varied between 2.5 �9 105 and 20 �9 105 N/m 2, at a contact t empera tu re  of 500 ~ The 
thermal  contact res is tance  was determined according to the formula  

Ate 
R c = - - ,  q (17) 

where At C is the tempera ture  drop ac ros s  the contact found by l inear extrapolation of specimen t empera -  
tures  up to the contact plane. 

The maximum e r r o r  in this determination of RC amounted to about 10%. 

The quality of the surface finish on the contact pair  was checked with a prof i lograph-prof i iometer  of 
the Kalibr Works.  The VM-1 alloy specimen had been ground to a Class 10 surface fineness, while the 
KhlSN9T steel specimen had a Class 4 surface fineness with a mean microroughness  of 24 pro. The radius 
of grinding t racks  was about 103 t imes  the width 2a of the contact zone and, consequently, the effect of the 
curvature  of the grinding t rack  could be d is regarded assuming the t rack  to be straight.  

In examining the contact surface of the Kh18N9T steel  specimen on the prof i lograph-prof i lometer  we found 
awaviness  ( in thedi rec t ionperpendicular  to the grinding t racks)  with a step of 5-6 �9 10 -3 m. The cres t  height 
of this waviness was approximately the same as that of the mieroroughness .  These waviness pa ramete r s  
agree  approximately with the resul ts  shown in the picture collection of surface quality attained by different 
surface t rea tments  [4]. 

As a resul t  of an existing waviness condition, an actual contact between sur faces  is formed only by 
the mieropro t rus ions  at the wave peaks. 

It is evident f rom Fig. 4 that the discrepancy between calculated (b = 3 �9 10-3 m) and experimental  data 
is g rea te r  at l ighter loads than at heavier  loads. This can obviously be explained by the fact that the heights 
of the wave peaks va ry  somewhat.  Thus, it is noted in [6] that the difference between the heights of indivi- 
dual waves can amount to about 20~c. When the relative contact a rea  ~ is small,  therefore ,  the load is taken 
up by the highest mic ropro t rus ions  only and, consequently, the distance 2b between adjacent m ic rop ro t ru -  
sions within the contact region may be g rea te r  than the waviness pitch. 

The change in dimension b due to loading can be accounted for, if the wave shape as well as the shape 
and the height distribution of mic ropro t rus ions  are known. 

In this way, the thermal  contact res i s tance  of a planar contact under vacuum can, to the f i rs t  approxi-  
mation, be calculated by formula (16). For  a m o r e  accura te  calculation, it is necessa ry  to account for the 
change in dimension b due to loading. 

X, Y 
2a 
2b 

h 
x, y 
t 

t c  
q 

PC 

a B 
AM 

XM = 2XMlikM2/(XM 1 + XM 2) 
U, V 

Ui 
u(oo) 
4(-00 ) 
RC 
r c  

N O T A T I O N  

are  the coordinates (Fig. 1); 
is the width of contact zone; 
is the contact pitch; 
is the relat ive contact area;  
is the difference between ideal and actual relat ive contact areas;  
are the dimensionless  coordinates;  
is the tempera ture ;  
is the contact tempera ture ;  
is the heat flux; 
is the contact  pressure ;  
is the ultimate strength; 
is the the rmal  conductivity; 
is the equivalent thermal  conductivity (bodies 1 and 2); 
are  the conjugate harmonic  functions (u is the tempera ture  function, v is 
the thermal  current  function); 
is the u-function for  an ideal contact (~ = 1); 
is the u-function at x = oo; 
is the u-function at x = -~o; 
is the thermal  contact res is tance;  
is the relat ive thermal  contact res is tance .  
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